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ABSTRACT

Base thermal environment measurements were made on all of the Saturn
I Block I vehicles (SA-1 through SA-4). Total and radiation calorimeter meas-
urements were made in the base region along with base gas temperatures and
pressures. Details of the instrumentation and problems encountered in the data
evaluation are discussed, and the data are compared from flight to flight on the
basis of altitude. Some representative correlations of total and radiation heating,
gas temperatures, and base pressures with small scale model tests are included.
Flight heat transfer coefficients are calculated and compared with the model
results. sor iAo
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TECHNICAL MEMORANDUM X-53326

SUMMARY OF BASE THERMAL ENVIRONMENT MEASUREMENTS
ON THE SATURN I BLOCK I FLIGHT VEHICLES

SUMMARY

Base thermal environment measurements were made on all of the Saturn
I Block I vehicles (SA-1 through SA-4). Total and radiation calorimeter meas-
urements were made in the base region along with base gas temperatures
and pressures. Details of the instrumentation and problems encountered in the
data evaluation are discussed, and the data are compared from flight to flight on
the basis of altitude. Some representative correlations of total and radiation
heating, gas temperatures, and base pressures with small scale model tests are
included. Flight heat transfer coefficients are calculated and compared with
the model results.

Maximum heating rates on the heat and flame shields occurred at lift-off
for both the total and radiation calorimeters. Maximum flame shield total heat-
ing rates were three times (60-90 watts/cm?) that of the heat shield maximum.
A secondary peak occurred on the base where the reverse flow from the inboard
engines becomes choked. Base gas temperatures varied widely with location on
the base with a maximum probable value of 1100°C on the heat shield and 1800°C
on the flame shield.

Base heat shield pressures were near ambient up to the altitude where
reverse flow from the inboard engines became dominant. Above this altitude
the base pressures were greater than the ambient. The flame shield pressure
showed a similar trend to the heat shield; however, the variation from the am-
bient was much greater and, above the choking altitude, became relatively
constant.

The effects of one inboard engine out were found to increase the flame
shield heating rate and decrease the gas temperature and pressure level.

The successful acquisition of the base thermal environment data has made
possible the establishment of measured base heating rates for multi-jet LOX-RP-
1 propelled vehicles, and has served as a basis for developing improved methods
of data measuring, reduction, and evaluation.




INTRODUC TION

The successful launching of the Saturn SA-4 flight vehicle conciuades the
Block I research and development tests of the Saturn I program, which consisted
of four flights (SA-1 through SA-4) of the configuration shown in Figure 1. Since
the primary mission of these flights was to check out the booster, the eight-
engine cluster S-1 stage shown in Figure 2 was the only live stage for these tests.
The upper S-IV and S-V stages were dummy and carried water ballast to simu-
late the actual loading. The payload was a dummy Jupiter type nose cone and an
S-V adapter section.

Block IT vehicles, which begin with SA-5, have the configuration shown
in Figure 1. The H-1 engines on these flights (SA-5 through SA-10) will be up-
rated from 165, 000 pounds thrust to 188, 000 pounds each on the booster stage.
The second S-IV stage, which will also be live, will be powered by six RL-10
engines of 15,000 pounds thrust each.

The Block I vehicles were all launched from Complex 34 at Cape Kennedy,
Florida. The SA-1 was launched on October 27, 1961, the SA-2 on April 25,
1962, the SA-3 on November 16, 1962, and the SA-4 on March 28, 1963. Early
engineering evaluations of each of the Block I test vehicles are contained in
References 1 through 4. The performance of each of the vehicle systems, giving
special attention to deviations from expected operation and the occurrence of
malfunctions, is emphasized. This report gives a more definitive presentation
of the data obtained from the Block I flight tests for determining the base thermal
environment. Data interpretation and the problems which are due to calorimeter
design, mounting techniques, and calibration procedures are emphasized. The
scope will be limited to measurements of the heating rates, gas temperatures,
and pressures on the base heat and flame shields of the vehicles and will include
all possible comparisons with model test data.

VEHICLE BASE CONFIGURATION

When the design of the Saturn engine cluster was conceived in 1958, the
high base heating rates experienced in the Jupiter (Ref. 5) and other missile
programs were fresh in mind, and attention was immediately focused on this
aspect of the development.




The structural and propulsion designers of the initial engine configuration
foresaw a circular engine arrangement. It was expected, however, that this
circular arrangement would cause a pronounced recirculation of hot combustion
products on the inside of the engine circle, as well as high radiative heat inputs
in the same area. This reasoning was later confirmed by experience on the
Polaris (Ref. 6). A cross-type configuration as shown in Figures 1 and 2 was
therefore chosen. The four fixed engines were placed as closely together as
possible at the center of the arrangement. The area remaining in the exit plane
between the four nozzles was sealed with a flame shield to prevent the hot gases
from circulating into the base area proper at higher altitudes. The hot recir-
culated gases and intense radiation expected between the inner engines was thus
trapped in a small, easily protected area. The four movable outer engines were
grouped about the four central engines at a distance which minimized, within de-
sign limitation, the potential jet interference.

To protect the engine compartment against the recirculating high tem-
perature gases in a region forward of the flame shield, a base heat shield was
placed on a plane perpendicular to the vehicle axis and approximately at the
throat plane of the eight rocket engines. Since aerodynamic loads were not per-
mitted on these engines, the outer engines were each protected by a shroud that
extended beyond the heat shield. Scoops were placed on these shrouds and in
the area between them to flush these regions of the heat shield with cool am-
bient air. ‘

The gas turbine of the H-1 engine discharges a fuel-rich exhaust
(O/ F ~ .33). Afterburning of the turbine exhaust gases caused high heating
rates on the Jupiter missile when it was discharged into the base region. The
inner engine turbine exhaust of the S-1 is dumped overboard through ducts which
are located as shown in Figure 1. Since the gas generator and turbine are at-
tached to the engine, discharge of turbine exhaust of the outboard (movable)
engines into the ambient flow was mechanically difficult. Hence, the turbine
exhaust gases are discharged with an exhausterator located around the exit of
each outboard engine nozzle.

The heat shield consisted of an outer layer of aluminum reflective tape,
a thin layer of low temperature subliner (T-500 Thermolag) and a filled phenolic
epoxy (X-258) insulation which is bonded to the metallic portion or structural
plate of the heat shield. A sketch of the heat shield cross section is shown in
Figure 3a. The reflective tape was added to retard the sublining of the sur-
face material due to the initial high radiation level associated with launch, and
was not expected to survive the full flight time. Small patches of tape were
observed to be loose on both SA-1 and SA-2 at lift-off.




Some difficulty was encountered before the SA-1 flight in obtaining a
good bond between the reflective tape and the sublimer. Because the moisture
absorbed by the base shield material caused the tape to pull away from the base
structure, it was necessary to remove this tape and to apply new tape. Steps
were taken to remedy this situation for the remaining Block I flights.

The flame shield consisted of a structural steel plate and an asbestos
phenolic laminate (CT-301) insulating material. The cross section of the flame
shield is sketched in Figure 3b. The gap between the flame shield and inboard
engine nozzle wall is sealed so that the reversed gases do not pass directly to
the base shield.

The area between the outboard engine walls and the heat shield is en-
closed with flexible curtains having an outer layer of ""Refrasil" cloth covered
with reflective tape.

For the SA-3 and SA-4 flights, sample test panels of the material pro-
posed for the Block II heat shield were used. Figure 3c shows the cross section
of this heat shield design which incorporates an unfired ceramic (M-31) insula-
tion which is nonpyrolizing.

FLIGHT TRAJECTORIES

Figures 4a, 4b, and 4c give the altitude, Mach number, and velocity as
a function of flight time for the Block I vehicles. The trajectories of SA-1 and
SA-2 flights were very similar in all respects. The SA-3 flight had a heavier
lift-off mass due to a full propellant loading, resulting in lower values of the
altitude, Mach number, and velocity for a given time than the other three flights.
To minimize the effects of the trajectory differences, the data are plotted as a
function of altitude for comparison. The SA-4 flight had a loading similar to
SA-1 and SA-2; however, a slight deviation in the trajectory was caused by the
programmed cut-off of engine number five at 100. 6 seconds.

FLIGHT TEST INSTRUMENTATION AND REDUCTION OF THE DATA

The instrumentation used to measure the thermal environment of the
base on the Block I vehicles is not considered representative of the ""'state of the
art' at this time. The condition is due to a rather inflexible system of long




leadtime requirements for the pruchase and installation design of the instruments.
Simple evolutionary changes have been made from flight to flight to improve the
situation, but certain inherent losses in the instrumentation and calibration
techniques preclude in the present data any attainment of a great degree of ac-
curacy in the measurement of the thermal environment. More sophisticated
instruments are being developed which are expected to eliminate some of the
existing sources of error. Details of the problems involved and the present
solution will be explained in later sections.

A, ACQUISITION OF DATA

The data used in this report were telemetered from the vehicle to
various ground tracking stations and recorded on magnetic tape. It was then
transferred to the MSFC Computation Laboratory for reduction and dissemination
to the various engineering groups for evaluation. The thermal data were received
as digital printout of the instrument temperature for every 0.1 second of flight
time. Automatic plotters also supplied these same data in graphical form. Typi-
cal samples are given for the SA-2 flight in the results. The accuracy of the
telemeter system of this type is given as 5 percent of the full scale reading;
however, for the Block I flights it appears that the accuracy is more probably
+2 to 3 percent of full scale.

B. BASE MEASUREMENT LOCATIONS

The locations of the instruments on the base of each of the Block I
vehicles are shown in Figure 5. Measurements were obtained from three total
and two radiation calorimeters, four gas temperature probes, and three flush
mounted pressure orifices on the heat shield. A total calorimeter, a gas tempera-
ture probe, and a pressure orifice were located on the flame shield between the
four inboard engines.

Radiation calorimeters C79-2 and C64-4 were located symmetrically with
respect to the engine pattern near engines 2 and 6, and 4 and 5, respectively,
but unsymmetrically with respect to the turbine exhaust ducts off fins II and IV,
Assuming similar engine operation, each calorimeter should yield similar data
except for the influence of control movements of the outboard engines and the
possibility of unsymmetrical heating from the turbine exhaust ducts.

The same geometric situation exists for the total calorimeters C76-3 and
C63-1 with the probable result of afterburning and engine movement affecting
both the radiation and convective component measurements unsymmetrically.
The location of gas temperature probes C10-2 and C10-4 behind engines 2 and




4 and the engine shrouds is approximately similar and should be influenced only
slightly by engine movement and vehicle angle of attack. The remaining instru-
ments are located individually, and cannot be compared except on a flight-fo-
flight basis and to show variations with location on the base.

Table I summarizes the instrument locations as to the symmetric place-
ment of similar units and conditions which cause the gas flow over them to be
unsymmetrical. A basis for making comparisons is also presented, and the
instruments involved in determining certain evaluation quantities (convective
heating rate, heat transfer coefficient, ete.) are listed.

C. TOTAL CALORIMETER MEASUREMENTS

The total calorimeter is an instrument designed to measure the
heating rate caused by a convective fluid flow over its surface in addition to the
absorption of radiant energy. The output of the calorimeter will then give the
"total" or sum of the two types of heating. Typically, the total calorimeter is
a slug of metal with a high value of thermal conductivity. It has a thermocouple
mounted from the rear of the slug which mecasures the change in temperature of
the slug with time. The slug, isolated from the surrounding structure to mini-
mize heat conduction losses, has a surface finish with an emissivity approaching
1.0. For the ideal casc with perfect isolation and with a slug temperature below
the level where reradiation becomes significant, the equation for the total heating
rate is simply

. m dT dT
Ww=C%a aw "%t w:e (1)

where C_ == heat capacily ol the sensor

m = thermal mass

A = active area of the thermal mass
p = density of the thermal mass

t = thickness of the mass

T = sensor tcmperature

0 - time.




A discussion of methods for evaluating calorimeter data and the procedure used
in this report will follow; additional information will be given in Appendix A.

1. Heat Shield. Three total calorimeters were installed on the heat
shield at measurement locations C63-1, C77-5, and C76-3 as shown in Figure
5. A drawing of the calorimeter used on all the flights is given in Figure 6. The
nine-inch pedestal and flush mounting of the calorimeters are shown in Figures
7, 8, and 9. Table I indicates for each flight how the calorimeter was mounted,
its location, sensing element thickness, and whether it had a copper or nickel
element. The surface of all sensing elements was coated with platinum black
to give a high absorptivity.

The evaluation of the base heating rates from these data has proved to be
a difficult task. The isolation of the sensing elements of the calorimeters was
not satisfactory since the twelve bolts shown in Figure 6 contact the sensing
element, the casing, and the heat shield structure. Some isolation was obtained
by the use of a small groove around the sensing element to act as a heat flow
barrier (Fig. 6). It was also found from photographs taken on the launch pad
that the methods of mounting varied from flight to flight. This situation produced
additional errors which could not be accounted for by normal calibration means.
Figures 10 and 11 indicate some of the mounting conditions found. Figure 10
shows total calorimeter C76-3 as flown on flights SA-3 and SA-4. For the SA-4
flight, an aluminum tape covered the pedestal and calorimeter bolts, whereas
for SA-3 no tape was used. It is impossible to determine from the photograph
if the tape covered the opening in the pedestal of SA-4, Laboratory tests (Ref.
7) have indicated that backside heating caused by hot gases circulating within
the pedestal can have a marked effect on the calorimeter losses.

Figure 11 indicates the situation for the flush-mounted calorimeters.
For the SA-3 flight, calorimeter C77-5 was very neatly mounted in the M-31
panel and appears to have good edge contact with the M-31. The SA-4 flight
calorimeter C63-1 appears to be very crudely installed with little edge contact,
and part of the heat shield chipped away exposing the lower part of the calorimeter.
These cases are typical of the mounting conditions which made an exact evalua-
tion of the heating rates, regardless of the method used, virtually impossible.

The calorimeters used on the SA-1, SA-2, and SA-3 flights were cali~-
brated before the flight using an infrared quartz tube lamp-bank as a radiation
source. The heat source was used for both radiation and total calorimeters.
The source did not simulate combined radiation and convective heat flow which
would be needed for the proper calibration of the total calorimeters. The heat
shield structure was not simulated for the calibrations of these flights, but a




partial simulation was made for the SA-4 flight, which indicated sizeable dif-
ferences for similar calorimeters when compared with the earlier flight cali-
brations. The results of experimental work in evaluating and comparing the
total calorimeter losses are found in References 8 and 9. Additional analytical
and experimental information on total calorimeters used in flight tests is found
in References 10, 11, and 12, whichverify the problems encountered in evaluating
the heating rates on the Saturn I heat shield.

Another problem to be considered in evaluating the total slug calorimeter
is that of the thermal boundary discontinuity on the heat shield surface caused by
the presence of the calorimeter. Analytical invéstigations, such as References
13 and 14, have indicated that the calorimeter-measured heating rate may have
large deviations from the actual heating rate to the heat shield. The referenced
works consider ideal cases of incompressible laminar and turbulent boundary
layer flow along a flat plate. The attempted application of these methods to
correct the flight data would likely yield erroneous results, since the turbulent
character of the base flow field is likely to reduce or eliminate these tempera-
ture mismatch effects (Ref. 15 and 16).

The total heat rate data presented in this report represent only the heat~
_ing rate to the calorimeter surface which has been corrected for radiation and
conduction losses, and should not necessarily be interpreted as the absolute
value of the heating rate to the heat shield surface. It has generally been con-
cluded that a slug type calorimeter can only be calibrated satisfactorily for its
ability to measure the flow of heat into the slug for the specific heat source and
mounting condition of the calibration. It cannot be calibrated in a manner that
will accurately indicate the heating rate to the structure in which it is installed.

The method used for reducing the calorimeter time-temperature curves
to heating rates employed an inflight calibration procedure. This accounted for
the conduction losses at engine cut-off and applied this loss over the total flight
time. A development of the method follows.

A heat balance equation can be written for the calorimeter slug to account
for its losses:

Qp=Q, +Qp (2)




where QT = total heat absorbed by the slug
Qs = heat stored in the slug
QL = heat lost by the slug.

Then

+Q o) (3)

QT - Qs * (erL

coL

where er = reradiation loss from slug surface

L

and Q = conduction losses from the slug.

coL

Expressing the equation in terms of a heating rate, and substituting equation (1)
for the Qg term, we obtain

. dT 4
= -— + -
qT p Cpt a0 eaT K(T Ti), (4)

which is the form suggested by Hottle and others. The temperature-time slope

aT was obtained from telemetered flight data as shown in Figures 25, 28, and 31,
etc. The obviously "wild" points were omitted, and a computer program deter-
mined a polynomial curve fit by a method of "least squares.'" These curves were
then differentiated to obtain the slope. For the radiation term ¢ ¢ TfN, the emis-
sivity ¢ was taken at 0.9 since all the slug surfaces were blackened. The Stefan-
Boltzman radiation constant is symbolized by o, and Ty is the temperature of
the slug.

The heat conduction losses are found by the evaluation of the loss coeffi-
cient K. The evaluation is made at the point of the inboard engine cut-off (IECO)
where a sharp drop in the calorimeter temperature-time curve is observed.

The outboard engine cut-off (OECO) had little or no effect on the curve, indi-
cating a very low heating rate contribution due to these engines after inner engine
cut-off. The value of ‘iT could then be assumed equal to zero in equation (4).
Then -g—’g will be equal to the slope of the temperature curve and Tw the slug
temperature at inboard cut-off. Thevalue of (T - T;) is takenas the tempera-
ture difference between lift-off and inboard engine cut-off. Here the assumption
is made that the calorimeter casing temperature remained at the initial launch




temperature. This assumption is a conservative one since the case temperature
will rise during the flight and the value of (T - Tj) will decrease, thus yielding

a lower conduction loss than that obtained under the constant casing temperature
assumption. With all the quantities of equation (4) known for the engine cut-off
condition, K can be evaluated:

dT
pCpt (a'b' - €0 Tév
. c-0 c-0
K= (Tc_o — Ti) . (5)

The value of K is then inserted as a constant in equation (4), and the heating
rates as shown under ""Results'' are calculated by a computer program. Refer-
ence 17 gives a more detailed discussion of the loss coefficient, along with an
analytical derivation of the quantity.

Some confidence in this method over the preflight calibration procedure
(see Appendix A) is indicated in Reference 18. A mathematical model of the
total calorimeter was formulated, and the SA-3 flight heating rates obtained by '
the inflight calibration method were used as input to the model computer program
which calculated the slug temperature of the calorimeter. This temperature

.compared well with the measured flight temperature data.

2. Flame Shield. A single total calorimeter measurement, C78-8,
was made on the flame shield for each flight. A drawing of this calorimeter is
shown in Figure 12, and an installation drawing showing its location relative to
the fin reference lines is found in Figure 13. Figure 14 is a photograph of
typical instrumentation on the flame shield. The data reduction procedure was
identical to that described for the heat shield calorimeters.

D. RADIATION CALORIMETER MEASUREMENTS

Two slug-type radiation calorimeter measurements, C79-2 and
C64-4, were flown on each of the Block I flights. The use of these measurements
in the data evaluation can be found in Table I. Figure 5 shows their location on
the heat shield. The calorimeters had minor design changes from flight to flight
to improve their accuracy, such as increased view angle, better slug isolation,
and an improved nitrogen purge system. Figures 15, 16, and 17 show the con-
struction of the calorimeter used for each flight; Figure 18 shows the pedestal
mounting installation used for all Block I flights. The flight conditions of each
measurement are given in Table II; Figure 19 is a photograph of a typical
radiation calorimeter mounted on a pedestal.
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As seen in Figures 15 through 17, the radiation calorimeter consisted
of a copper slug with a blackened surface enclosed behind a sapphire window to
isolate the convective flow from the slug surface. A conical purge of high pres-
sure nitrogen gas is used around the sapphire window to prevent the possible
clouding over by the carbon particles circulating in the base region.

The radiation calorimeter, since it was of the slug type, was subject to
the same losses as the total calorimeters, and the method used to evaluate the
heating rate was identical to that used for evaluating the heating rates on the
total calorimeters. Additional conditions existing in the radiation calorimeter
make an accurate evaluation of the radiative heating rates even more difficult
than that experienced with the total calorimeters.

The radiation calorimeters should have a wide directional sensitivity or
view angle so as to respond to the total amount of radiation present in the base
region. For the SA-1 flight, the calorimeter of Figure 15 had a total conical
geometric view angle of approximately 114 degrees. This angle was increased
to 130 degrees (Fig. 16) for the SA-2 flight as a result of a redesign of the nitro-
gen purge ducts to prevent cooling of the calorimeter slug by the purge gas.
Further improvements (Fig. 17) of the purge system and view angle (150 deg),
as well as better slug isolation, were incorporated in the calorimeter of location
C79-2 for SA-3 flight, and both C64-4 and C79-2 used this instrument for the
SA-4 flight. An experimental evaluation of the effects of the increased view
angle for these calorimeters is found in Reference 19, which indicates that the
factor required to correct the 150 degrees view angle calorimeter to 180 degrees
was close to unity and uniform with respect to the distance from the radiating
source. The other two designs showed larger correction factors and a sharper
influence of the source location.

As mentioned above, the early purge design produced a cooling effect on
the calorimeter slug which made evaluation more difficult. Calibration of the
later designs indicated that this condition had been eliminated. Simple ground
tests were performed with a blow torch which showed that the purge design was
effective for the test conditions; but since no simulation of the actual flight con-
ditions could be made,it is not known just how effective the purge is during the
flight. It is possible that an increasing filtering effect is present in the data
caused by a gradual build-up of carbon contamination on the sapphire windows.

The transmissive properties of the sapphire window also influence the
output of the calorimeters in a manner which cannot be accurately evaluated with
the test data available. Reference 17 shows that for normal radiation approxi-
mately 85 percent transmission was indicated out to a wavelength of 6 microns.
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It was found that the nontransmitted energy at the shorter wave lengths is lost
by reflection and the energy at the longer wave lengths is mostly absorbed by
the sapphire. The laboratory calibration accounts for this loss based on a
normal radiation from an infrared lamp; however, under flight conditions the
radiation is from a nonuniform source, and the jet plume changes shape (Fig.
20), temperature, and spectral distribution as the altitude increases. For a
valid correction to be made to the radiation calorimeters, these quantities
would be required so that the losses from reflection and absorption could be
evaluated. It is estimated that if the correction could be made it may be 15
percent or more for some conditions. Because of the complexity of obtaining
the required data for this correction, it was not considered practical to include
it in the measuring program, and the radiation data presented have not included
any correction for the window transmissivity. Additional information in this area
is found in Appendix B.

E. GAS PROBE MEASUREMENTS

In an effort to determine the temperature of the gases circulating
in the base area, six gas probe measurements were made on the heat shield
and one on the flame shield on each flight. Figure 5 indicates the locations of
measurements C10-2, C10-4, C10-7, C65-3, C67-7, and C93-7. The mounting
conditions of the probes are summarized in Table II; a drawing of the types of probes
used is found in Figure 21. The SA-1 probe shown in Figure 21a had its thermo-
couple junction enclosed in a double-walled radiation shield which protected it
from high temperature gases, and made it very sluggish in its response to rapid
changes in temperature. For the SA-2 and subsequent flights, the design was
altered as shown in Figure 21b, and a satisfactory response was obtained. The
bracket was placed above the probe for the same measurements (Table II) not
only to protect the instrument from damage during installation on the launch pad,
but also to serve as a normal radiation shield for the thermocouple junction.

The probes were either flush-mounted on the heat shield or flame shield,
as shown in the photographs in Figures 14 and 22, or located on a pedestal whose
mounting surface was nine inches above the heat shield surface as shown in
Figure 19,

The sensing elements of the heat shield probes were chromel~alumel
junctions; the flame shield probe used a platinum-platinum 10 percent rhodium
junction since the temperatures in this region exceeded the level at which the
heat shield junctions could function.
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F. PRESSURE MEASUREMENTS

The base pressure was measured on the aft surface at three loca-
tions on the heat shield (D25-4, D25-7, and D38-4) and one location on the
flame shield (D38-7) as indicated in Figure 5. A typical pressure orifice is
shown on the photograph of the flame shield in Figure 14. The pressure, which
was measured using an absolute transducer with a 0 to 13.8 N/cm? range, had
a possible error of +2 percent full scale (0.276 N/cm?). This range was re-
quired since pressures must be measuredat groundlevel, as well as athighalti-
tudes. Since the transducer error at attitudes above 25 km (approximately) was
the same order as the measured pressures, the data above this altitude are
questionable. It is desirable that future base pressure installations have dual
range instruments and A P-type transducers to increase the accuracy of meas-
urements.

RESULTS

The following sections compare the results of each environment-type
base flight measurement on a flight-to-flight basis with the altitude as a variable.
For the heating rate data, a flight comparison of the calorimeter slug tempera-
ture is shown., For each measurement,typical telemetered flight data are shown
for SA-2 as plotted with an automatic x-y plotter at 0.1 second increments.
These plots, which show quite well the magnitudes of data scatter, are typical
of all the flights.

A. TOTAL HEATING RATES ON THE BASE

1. Heat Shield Heating Rates. The three total heating rate meas-
urements on the heat shield are found in Figures 23 through 31. Measurements
C76-3 (Fig. 23 through 25) and C63-1 (Fig. 26 through 28) were made in the
inner region of the base, symmetrical with respect to engines 3 and 1. Measure-~
ment C77-5 (Fig. 29 through 31) was made in the outer region of the base be-
tween engines 1 and 4.

The total heating rate data shown for the base calorimeters have the
same general trend with increasing altitude. The initial high value at lift-off
is caused by the launch procedure of holding the vehicle in position on the launch
pad for some three seconds until all the engines have approached full thrust.
This procedure creates a high radiation level on the base which is due to the
engine exhaust impingement on the launch deflector. After lift-off the total
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heating rate drops sharply as the normal radiation at low altitudes from the
engine plume is recorded. Starting at approximately 10 km (Fig. 20, picture
4), the total heating rate begins to increase as the reverse hot gas flow froin the
inboard engines produces a convective flow in the base region. At about 20 km
(Fig. 20, picture 5), the reversed flow from the inboard engines has reached

a choked condition, and the peak heating of the inflight condition is obtained.
Above this point the rapid expansion of the rocket plume causes a cooling of the
exhaust gases and a reduction in the radiation level as shown by the decreasing
value of the total heating rates.

The wide variations in the data cannot be analyzed in detail because of
the many factors that influence the final results. If we with the aide of Table
II, undertake to establish the effects on the data of the mounting condition (flush
versus pedestal), no conclusive trends can be established possibly because of a
randomly turbulent flow as explained in References 15 and 16. In Figure 29 for
measurement C77-5, it is observed that for a flush mount in an M-31 panel the
heating rate for SA-4 is lower than SA-3 at cut-off by a factor of 4. When the
"as flown" measurement photographs were checked, the mounting conditions
were the same as those shown in Figure 11, This variation in the mounting is
suspected, at least in part, for the large difference in the heating rates. How-
ever, looking at the data for the measurements shown in Figure 11 (C77-5 for
SA-3, and C63-1 for SA-4), which were located near each other, we see in
Figures 23 and 26 that, at SA-4 cut-off, measurement C77-5 is higher by a
factor of only 1.15 over measurement C63-1. This illustrates the advantage of
making measurements on a number of flights so that a mean value of the base
thermal environment can be established.

The heat rate data are presented in Figures 23b, 26b, and 29b as a
function of flight time for better detail in the low altitude region. These curves
should not be used for a comparison between flights since the trajectory condi-
tions between them differ.

Figures 24, 27, and 30 give the calorimeter slug temperatures for each
flight. The part of the curve past the inboard engine cut-off point was the por-
tion used to evaluate the loss coefficient term used in determining the flight
heating rates.

A sample of the telemetered SA-2 flight data for the three measurements
is shown in Figures 25, 28, and 31. These temperature-versus-time curves
are typical of the measurements in shape and magnitude of the data scatter of all
the Block I flights.
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2. Flame Shield Heating Rate. The area between the four inboard
engines was expected to have unusually high heating loads, and unless special
protection was applied in this area, structural failures may have resulted. A
flame shield, shown in Table I and Figures 1 and 2, was placed between the
inboard engines. A cross section of the material used is found in Figure 3b.

Details of the flame shield measurement C78-8 are given in Figures 12,
13, and 14, The total heating rate on the flame shield is presented in Figure
32. The slug temperatures are found in Figure 33 and a sample of the SA-2
telemetered data in Figure 34.

In Figure 32 the maximum total heating rate observed at lift-off is three
times the value found for the heat shield area. After clearing the launch pad,
the level decreases rapidly and the flow assumes a condition as shown for the
low altitude condition in Figure 35. As the altitude increases, there is the
gradual change into the flow condition that is shown for high altitudes in Figure
35. The plume expansion of the four inboard engines results in the interaction
of their wakes and the formation of a standing shock. A reversal of the flow
which takes place impinges on the flame shield area and causes the heating rate
in this area to again increase. The reversed flow is forced out between the
engines and parallel to the flame shield surface as shown in the third sketch of
Figure 35. As the altitude continues to increase, the critical pressure ratio is
reached, and the flow becomes choked in the minimum area between the engines.
Additional discussion of this condition is found in section IV-D. It is believed
that the peak heating rate found at approximately 8 km occurs before the arrival
of the fully choked flow condition, since it would be expected that the heat rate
would become relatively constant above the choking altitude. This seems to
occur between 15 and 20 km in Figure 32 and is indicated in much of the other
data discussed in section IV-D. The rapid decrease in the heating rate prior to
this choked condition is not fully understood; however, based on the simulation
tests of Reference 18, part of the decrease can be accounted for. It was found
that above 650°C, the platinum blackened surface of the calorimeter was burned
off, greatly altering the absorptive and emissive properties of the calorimeter
slug used for calculating the heating rate. This temperature agrees well with
the point at which the flight slug temperatures shown in Figure 33 begin to
flatten. The extent of the change would be difficult to determine since the actual
condition of the slug is unknown. The heating rate rise at 35 km for SA-4 was
due to the shutdown of the number 5 inboard engine.
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B. RADIATION HEATING RATES

The two radiation measurements made on the Block I vehicles C79-2
and C64-4, which were located in symmetric locations with respect to engines
2 and 4 as shown in Figure 5. The data are summarized in Figures 36 through
41, The measured heating rates for C79-2 and C64-4 are given in Figures 36
and 39, respectively. The data shown have been evaluated using the inflight
calibration method as explained in section III-D; no corrections have been in-
cluded for the window transmissivity loss or the effects of the variable view angle
of the calorimeters. The apparent effect of the view angle is seen in Figures
37 and 40. The heating rates for the 150 degree view angle calorimeter were
generally higher than the data from the flights with the smaller 130 and 114
degree view angles. However, measurement C79-2 of the SA-1 flight with the
114-degree view angle was actually higher over most of the flight than the SA-2
data for a 130-degree view angle. At the smaller view angles other factors may
offset the effects of the change in angle. The slug temperature data in Figures
37 and 40 present a consistent picture for the effects of change in view angle
regardless of the various slug thicknesses which alter the temperature levels
shown. Rather consistent temperature data are observed with the exception of
measurement C64-4 on the SA-4 flight. It appears that some undetermined ob-
struction or temporary purge failure caused the calorimeter slug to experience
a heat loss from approximately 3.5 to 35 km altitude. It then returned to a
value quite close to that of C79-2 and at cut-off had nearly the same cooling rate.
The resulting heating rate curve shown in Figure 39 is not to be considered
valid, but is only shown to illustrate that semingly satisfactory data from the
electrical and acquisition standpoint can yield results which deviate widely from
established levels.

The trend of the radiation data is seen to be similar to that of the total
heating rates since the radiation is a component of the total heating. After
lift-off the high radiation, created by proximity to the launch pad, decreases
rapidly. As altitude increases, radiation continues to decrease until luminous
regions appear in the jet impingement boundaries. These regions are created
by the plume expansion and reversed flow process of the inboard engines (Fig.
35). The radiation heating rate again increases until the reverse flow of the
inboard engines has reached a choked condition. Beyond this point the radiation
~ decreases to a relatively constant level.

C. GAS PROBE TEMPERATURES

Gas probe temperatures were measured at five locations on the heat
shield and one location on the flame shield (Fig. 5). The data for each flight
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at a particular measurement location along with a sample of the SA-2 telem-
etered data are found in Figures 42 through 53.

Similar gas temperature measurements, C10-4 and C10-2, located be-
tween the outboard engines 4 and 2 and the engine shrouds, are shown in Figures
42 and 44. The temperature level at the two locations compares quite well, with
the exception of C10-2 for the SA-2 flight where wide oscillations in the tempera-
ture are noted up to an altitude of 10 km. The data shown for the SA-1 flight
should not be considered as a true measurement since a double shielded probe
‘Was used which made its response very poor. The temperatures increase at a
rapid rate up to the point where the reversed flow from the inboard engines bhe-
comes choked. Beyond this point a decrease in temperature is observed. In
Figure 42 the calculated free stream total temperature is compared with the
gas temperatures and found to be lower up to an altitude of 30-35 km.

Temperature measurements C10-7 and C65-3 in the open base area are
shown in Figures 46 and 48. These temperatures reach peak levels as high as
1150°C, some 300°C higher than the measurements made behind the shrouds.
This difference indicates that either the hot gases do not circulate well behind
the shroud or the air scoops mounted on the shrouds cool the gas effectively.
Since at the high altitudes the temperature difference is approximately the same
and the scoops are not expected to be effective under these conditions, it is
suspected that only a small amount of the exhaust gases is found in the shroud
region.

The mounting conditions of measurements C10-7 and C65-3 were dis-
similar in that C10-7 was a flush-mounted instrument (thermocouple 1.5 inches
off the heat shield surface) and C65-3 was on a 9-inch pedestal. The mounting
positions do not reflect any appreciable change in the temperature level.

One additional gas temperature measurement C93-7 was made on the
heat shield from a pedestal mount located beneath the flame shield in the space
between adjacent inboard engines. The peak temperature compares well with
the measurements C10-4 and C10-2. After the choked condition occurred in the
flame shield region the temperature decreased more slowly than in the shroud
area and reached a temperature level somewhat higher.

A single gas temperature measurement C67-7 was flush-mounted to
the flame shield, the results of which are given in Figures 52 and 53. Some
difficulty was encountered in obtaining data from this measurement. However,
only data from the SA -1 flight were considered totally unreliable. The peak

temperatures were not measured for any of the flights since the recording range
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was set for 0 to 1500°C. As shown in Figure 53 when the upper limit is reached,
a constant temperature is recorded until the actual temperature drops below the
limit line. The extrapolations shown in Figures 52 and 53 were based on the
shape of the curves and recent Block II data which had an upper range limit of
1750°C. The actual peak temperature is estimated to be approximately 1800°C
which is 100°C above the maximum level that platinum-platinum 10 percent
rhodium thermocouple junctions are designed to operate. The erratic behavior
of the data after the peak temperature has been reached for the SA-3 and SA-4
flights indicates a. failure of the junction because of melting. In the SA-3 flight,
there appears to have been a re-fusing of the junction, and the temperature after
recovery compared very well with the SA-2 data which showed no indication of

a junction failure. The SA-4 data showed a more pronounced junction failure
after the peak temperature was reached. The re-fusing or partial re-fusing

of the junction must have taken place at the surface of the thermocouple stem

or within the stem, since indicated temperatures are much lower and do not
follow the other measurement trends in this region.

The constant level of the gas temperature after the reverse flow has
choked in the flame shield would seem to be reasonable since the total heating
rate also levels off above the choked altitude. At this altitude and above, the
unburned carbon particles in the exhaust plume do not have sufficient oxygen
from the atmosphere to afterburn and so are introduced into the inner restricted
flame shieldareaas hot unburned carbon. Figure 35 shows that, after choking has
occurred in the flame shield region, it becomes relatively isolated from the ex-
ternal influences of changes in altitude and velocity. The plume in this region
wili retain a fixed shape since the pressure in the flame area reached a con-
stant value (Fig. 59). The conditions in this region can be considered in a
state of thermal and flow equilibrium with the carbon particles radiating at a
constant level and with a constant rate of hot gases flowing out over the flame
shield producing a uniform convective heat rate at a given location on the flame
shield. For the SA-4 flight this condition was disrupted by the shutdown of the
number 5 engine at 100. 65 seconds which resulted in an increased heating rate
(Fig. 32). The flame shield temperature for SA-4 was not reliable, and cur-
rent Block I1 data indicate a sharp drop in the temperature and then a leveling
off at a lower level with one inboard engine out.

D. BASE PRESSURES
Three pressure measurements were made on the heat shield (D25-4,
D25-7, and D38-4) and one on the flame shield (D38-7) as shown in Figure 5.

The three heat shield absolute pressures are compared in Figure 54 for the
SA-4 flight. The figure indicates the accuracy of the measurements, and it is
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seen that above 25 km the range of the measurement accuracy is the same order
as the pressures measured. Also,” the variations in one measurement exceeded
the differences caused by the location on the base and the best value of the base
pressure would be the arithmetic average of the three measurements. Figure
55 shows a sample of the uncorrected telemetered data for D38-4 for the SA-2
flight. The maximum scatter for these data is approximately +0. 24 N/cm?,
which is within the £0.276 N/ cm? accuracy given for the gage. The average
base pressure for the Block I vehicles is shown in Figure 56. To see how these
pressures vary with respect to the ambient pressure (Fig. 57) the base pressure
was ratioed to the ambient pressure (Fig. 58). For the region up to the choking
altitude the data differ; SA-1 and SA-3 flights indicate a base pressure higher
than the ambient, and for SA-2 and SA-4 flights the pressure is slightly lower
than ambient indicating an injector effect over the base. Above the choking alti-
tude, the ratio increases. . This indicates that the reversed flow from the in-
board engines is feeding into the heat shield area.

The flame shield pressure measurement D38-7 is given in Figures 59
through 62. A very good comparison of the absolute pressure for all flights
except SA-3 was obtained (Fig. 59). The SA-3 data between 2.5 and 25 km are
questionable. The flame shield pressure decreases in a manner similar to the
heat shield pressure up to the point where the reverse flow from the flame
shield becomes choked. At this point the flame shield pressure remains rela-
tively constant as the altitude increases. For all the flights there was an equi-
valent altitude variation of only 13. 0 to 14.5 km on the flame shield. The data
shown for SA -4 indicate the effects of one inboard engine out of operation on
the flame shield pressure. The sharp drop in pressure at 35 km is the result
of the shutdown of the number 5 engine. This drop is equivalent to a rise in
altitude on the flame shield from 13.2 toc 21 km. The flame shield pressure is
ratioed to the ambient pressure in Figure 60. The figure indicates an injector-
type pumping action of the ambient air (Fig. 35) for low altitudes. This action
continues from lift-off to an altitude of 11 to 12 km at which time the flow in the
flame shield area is reversed and the pressure begms to drop more slowly than
do the ambient and base pressures.

One additional curve has been found useful in evaluating the flow behavior
in the base region. Figure 61 shows the ratio of the flame shield pressure to
the average base heat shield pressure. This curve is equivalent to the pressure
ratio across a supersonic nozzle with the space between the inboard engines
taken as the nozzle throat, the flame shield pressure as the reservoir, and the
base pressure as the downstream conditions. The critical pressure ratio, or
the condition where Mach one is reached in the areas between adjacent inboard
engines, is found at some point along the curve. This will define the altitude
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at which the inboard engine reverse flow becomes fully choked and at which the
maximum possible mass of hot gas is introduced into the heat shield area. The
critical pressure ratio is defined as

p — p
4)_) _ [yt vy-1  _ F (6)
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where PO = reservoir pressure
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downstream pressure
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Y specific heat ratio for the hot exhaust gases (assumed to be 1.23)

PF= flame shield pressure

P§= average base pressure.
Then the critical pressure ratio for the above assumption is equal to

P
£ _ 1.79.
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The data shown for SA-1, SA-2, and SA-4 in Figure 61 for this ratio would indi-
cate that the flow chokes between 16.9 and 19.2 km. Confirmation of this range
is derived from the observation of the absolute flame shield pressure of Figure
59, the temperature of Figure 52, and the total heating rate of Figure 32. All
these data indicate that choking occurred between 15 and 20 km altitude. In a
later discussion experimental model results also confirmed this range.

E. CORRELATION OF FLIGHT MEASUREMENTS WITH MODEL TESTS

In the course of the design of the Saturn I flight vehicle, a consider-
able effort was expended in model tests to determine the base heating characteris-
tics of the design and to supply data which would be useful in determining the
required heat protection for the base area. A number of test programs in
facilities at the Lewis Research Center, Arnold Engineering Development Center,
and the Cornell Aeronautical Laboratory were conducted over a three-year
period. It is beyond the scope of this paper to make a detailed evaluation and
correlation of all the flight and model data available; however, representative
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comparisons of total heating rates, radiation heating rates, base gas tempera-
tures, and base pressures are presented. To obtain a background for the
procedures and methods used in the model tests, a review of the published re-
sults found in References 21, 22, 23, 24, 25, 26, 27, 28, and 29 would be
helpful.

1. Base Heating Correlation. The problems involved in devising
a base heating "hot jet" model which will closely simulate actual flight condi~
tions and yield data directly comparable are legion. For example, Figure 63
compares radiation heating rates taken from AEDC and Cornell tests on an S-1
booster 5.47-percent scale model with Block I flight data at approximately the
same location on the base. Both the flight and AEDC measurements, and a
procedure using equation (4) was employed for obtaining the heating rates. The
Cornell data were obtained by a totally different procedure using thin-film re-
sistance gages on a short duration test technique model. The model heating
rates shown are all for a sensor temperature of 38°C; whereas, the flight data
varied up to a value of 325°C. From a radiation standpoint, the model turbine
exhaust flow simulation was poor since hydrogen gas was used for all the model
tests. During flight the engine turbine exhausts a kerosene fuel~-rich mixture
(O/F =~ . 33) which has significantly different radiation characteristics from the
model simulation. Basic gas laws indicate that similarity between the model
and full scale exists only when the exhaust plumes are optically thin and when
the products of a linear dimension and density are identical for both. The
Saturn plume is far from optically thin, and at altitudes up to about 10 kilometers
the radiation is predominantly due to secondary combustion of the fuel-rich en-
gine exhaust with air. This process is influenced by scale, and the plume
geometry of the model deviates significantly from the flight plume. It is indeed
remarkable, considering all the negative factors involved, that the model and
flight data shown in Figure 63 compare so well.

The total heating rate on the base with model data are compared in Figure
64. The model data have been corrected for the calorimeter losses by the same
procedure as the radiation data. The convective component of the data is subject
to additional correction for scale effects before a valid comparison is possible.
The proper scaling procedure for this type of base flow has been very difficult
to determine, and additional effort in this area is needed. The present data
have been corrected on the basis of References 30, 31, and 32. A correlation
equation was developed for heat transfer on the rear of bodies in separated
flow, which indicated that the Nusselt Number is proportional to the Reynolds
Number to the two-thirds power. The scaling method used is discussed in the
Appendix C. The equation used for correlating the convective heating rates is
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L, -1

D
4 _ mod 3 R w flt (7)
D T - ’ ’
1t 1t TR~ TWmod | Cmod
where E]C = convective component of the flight measured heating
fit rate data
D = diameter of the model base
mod
Dflt = diameter of the flight vehicle base
(TR -T ) = Recovery temperature minus calorimeter temperature
mod  for the model
(TR - Tw) = recovery temperature minus calorimeter temperature
fit for the flight vehicle, TR = Tgag for the flight data
qc = model convective heating rate data.
mod

After the scaling, equation (7) was applied to the convective component
of the model data, the radiation was then added, and the total value plotted
(Fig. 64). Although comparison with the range of the Block I data is good, the
spread of the data in both cases is rather large.

Flight and model base gas temperatures are compared at approximately the
same location in Figure 65. The model data required no correction and follows
well the Block I measurement of C65-3 up to the altitude where reverse flow
becomes a factor. Beyond this altitude the model gas temperature decreases;
this indicates that there is less burning of the simulated turbine exhaust flow
in the base or that less of the hydrogen turbine exhaust gas reaches the base of
the model. It is believed that, from this critical altitude on up, scale effects
prohibit burning of the turbine exhaust in the base area of the models, while it
still continues on the flight vehicle.

2., Base Pressures. Pressures were measured at various locations
on the base of all model tests; average base pressure ratios were obtained and
compared with the flight results in Figures 58, 60 and 61. The model data for
the base-to-ambient-pressure ratio of Figure 58 indicate generally lower
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pressure for all the model tests up to the point of the inboard flow reversal.
Above this altitude the model data indicate a higher pressure than the flight
data. The differences can be attributed to the mismatch of the flow boundary
conditions upstream of the model base and the improper scaling of the flow de-
flectors and air scoops to the model boundary layer conditions (they were scaled
geometrically from the flight dimensions).

The flame-shield-to-ambient-pressure ratio model data are compared
to flight in Figure 60. The comparison of the data in this region is very good
over the whole model test range. This is due in part to the small influence of
the external flow conditions on this region and to the similarity of the model
engine and flight plume shapes. The flame shield to the base pressure ratio
data shown in Figure 61 also compared well with the model data. By using this
and additional experimental data found in Reference 33, the critical or choking
altitude was found to be 18. 75 km for a critical pressure ratio of 1.72. If the
critical pressure ratio were taken as 1.79, as shown in Figure 61, the choked
condition would first occur at an altitude of 17.5 km. Both these values fall
within the range indicated by the flight data in the previous section.

F. HEAT TRANSFER COEFFICIENTS

The result of the base heating rate and gas temperature measure-
ments is the determination of a base heat transfer coefficient which can be used
in the design of the heat shield protective material. The reliability of each
measurement will influence the resultant value of the coefficient and ultimately
the degree of conservatism of the heat shield design and the payload capability
of the flight vehicle.

The heat transfer coefficient is defined for flight data by the following
equation:

. "
(Tg - Tw) (Tg - Tw)

h

where h = vehicle heat transfer coefficient, watts/ cm?-°C

4y = total calorimeter heating rate, watts/cm?

QR = radiation calorimeter heating rate watts/ cm?
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g = convective difference between the total and radiation heating
rates, watts/cm?

T = gas temperature in the same relative location as the total calori-
meter, °C

Tw= temperature of the total calorimeter slug, °C.

The heat transfer coefficient was calculated for each flight on the basis of the
sample data given in Figure 66. By using the measurements shown in this
figure, which are located in the same relative poéition on the base, the heat
transfer coefficient was calculated at various positions along the trajectory.
Then, from Figure 66,

Y% |Meas. (C76-3) - Meas. (C79-2)]

- (Tg -T) " [Meas. (C65-3) - Meas.(C76-3) ]

h (9)

Normally, the value of h should be in a positive sense relative to the
heat shield. At low altitudes the inflow of ambient air to the base results in
a convective cooling (g < ‘.lR yields - Elc). The high lift-off radiation level
initially raises the wall temperature above the gas temperature (T, - Ty, is -),
and a positive value of h is obtained. The data have not been comp%etely con-
sistent with the above, since at the low altitude the wall and gas temperatures
are close to the same value and the data scatter is sufficient to cause (Tg - Tyw)
to become positive while 4, remains negative and a minus h results. The
negative values of h were not considered in Figure 67 but only a smoothed com-
posite curve of all the flight heat transfer coefficients is compared to the cor-
rected model heat transfer data. As explained in Appendix C, the model data
are correlated to the flight data by the equation

Elc
hflt =.378 (/=) =.378h (10)

T -T mod,
T w mod

where Tr = the model recovery temperature at E;c =0,

qc = convective heating rate measured on the model at TW = 38°C,

Tw = calorimeter slug temperature = 38°C,
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The model data are plotted for the particular test altitudes that simulated the
flight trajectory as shown in Figure 67. Considering the complexity of evalua-
tion and the averaging procedures employed, the excellent comparison of the
data is encouraging and adds some additional degree of confidence in the model
test results.

CONCLUSIONS

The following remarks are made concerning the measurements which
defined the thermal environment on the base of the Saturn I, Block I vehicles:

i. The data acquisition for the measurements was on the whole
considered satisfactory. There were very few cases where measurements
were lost or erroneous data obtained because of malfunction of the telemeter
system or thermal instrumentation.

2. Although the evaluation of the heating data has indicated large
variations for similar measurement locations and flight trajectories, it has
been possible to establish broad total base heating rate and gas temperature
levels that can be expected to exist in the base of multi-engine, LOX/RP-1
propelled vehicles.

3. Similarly, the radiation data experienced large changes in level
from flight to flight (due in part to improvements in the calorimeter design);
however, the data indicated a consistent trend and valuable information was
obtained on plume radiation attenuation with altitude.

4. The experimental model results had many instrumentation problems
similar to the flight vehicle, in addition to those of scaling and simulation,
which were responsible for the large data scatter band. Comparison of the
model results with the flight results showed that similar trends existed and
the level and scatter of the data were of the same order of magnitude.

5. The methods and procedures used for evaluating the thermal
environment have resulted in a minimum scatter of data--the least that could
be expected, possibly, considering the types, installation and limitations of
the thermal instrumentation used. The experience gained during these flights
has influenced the selection of instrumentation for future Saturn vehicles
which are expected to reduce the data scatter and eliminate many of the evalua-
tion problems previously discussed.
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TABLE I TABULATION OF BASE HEATING INSTRUMENTATION FOR S-I STAGE OF
SATURN I BLOCK I VEHICLES
CALORIMETER TYPE [ SENSING SLUG METHOD 1 LOCATION
NUMBER ELEMENT THICKNESS MOUNTED
SA-I
C63-1 TOTAL COPPER SLUG 12 N FLUSK HEAT SHIELD
CALORIMETER
C77-5 A2 1IN PEDESTAL
C76-3 A2 IN PEDESTAL
c78-8 .60 IN. FLUSH FLAME SHIELD
Cc79-2 RADIATION .126 IN. PEDESTAL HEAT SHIELD
CALORIMETER
C64-4 RADIATION : .126 1IN, PEDESTAL
Cl0-2 GAS TEMPERATURE CHROMEL -ALUMEL —_— FLUSH —
PROBE THERMOCOUPLE PROTECTIVE BRACKET
OVER DOUBLE SHIELD
Clo-4 -—_
Cl10-7 _
C65-3 _— PEDESTAL, NO BRACKET
C93-7 _— PEDESTAL, NO BRACKET
C67-7 PLATINUM-PLATINUM ———— FLUSH — FLAME SHIELD
10 % RHODIUM | DOUBLE SHIELDED
SA-2
C63-) TOTAL NICKEL SLUG 12 IN. FLUSH HEAT SHIELD -
CALORIMETER
c77-5 COPPER SLUG A2 N PEDESTAL
C76-3 A2 IN PEDESTAL
Cc78-8 .60 IN FLUSH FLAME SHIELD
C79-2 RADIATION .14 IN PEDESTAL HEAT SHIELD
CALORIMETER
C64-4 RADIATION .14 IN PEDESTAL
CALORIMETER
C10-2 GAS TEMPERATURE | CHROMEL-ALUMEL FLUSH —
PROBE THERMOCOUPLE PROTECTIVE BRACKET
AND RING
Clo-4 _— '
Clo-7 _—
C65-3 ] _— PEDESTAL, NO BRACKET :
C93-7 _— PEDESTAL, NO BRACKET i
Cc67-7 PLATINUM-PLATINUOM| —— FLUSH — FLAME SHIELD !
10% RHODIUM PROTECTIVE RING X
SA-3
C63-I TOTAL NICKEL SLUG 12 IN. PEDESTAL HEAT SHIELD :
CALORIMETER !
C77-5 COPPER SLUG Jd2IN. FLUSH, M-31 PANEL
C76-3 I A2 IN. PEDESTAL !
Cc78-8 .60 IN FLUSH FLAME SHIELD
C79-2 RADIATION 14 IN PEDESTAL HEAT SHIELD —
CALORIMETER 150° VIEW ANGLE
C64-4 RADIATION .27 IN. PEDESTAL HEAT SHIELD
CALORIMETER
Clo-2 GAS TEMPERATURE | CHROMEL-ALUMEL —_— FLUSH —
PROBE THERMOCOUPLE PROTECTIVE RING
Cio-4 —_—
Clo-7 —
C65-3 _— PEDESTAL, PROTECTIVE
RING
Cc93-7 —_— PE()ESTA%.| NPGROTE CTIVE
c67-7 PLATINUM-PLATINUM —_— FLUSH; PROTECTIVE FLAME SHIELD
10% RHODIUM RING
SA-4
C63-1 TOTAL NICKEL SLUG A2 IN FLUSH, M-31 PANEL HEAT SHIELD
CALORIMETER
c77-5 .12 IN, FLUSH, M-31 PANEL
C76-3 .12 IN PEDESTAL, X-258 PANEL |HEAT SHIELD, CALORI-
METER FLANGE UNDER|
PANEL
C78-8 COFPER SLUG .60 IN. FLUSH FLAME SHIELD
C19-2 RADIATION .27 IN. PEDESTAL HEAT SHIELD —
CALORIMETER 150° VIEW ANGLE
C64-4 RADIATION .27 IN. PEDESTAL HEAT SHIELD —
CALORIMETER . 150* VIEW ANGLE
Clo-2 GAS TEMPERATURE | CHROMEL-ALUMEL FLUSH — HEAT SHIELD
PROBE THERMOCOUPLE PROTECTIVE BRACKET §£
PROTECTIVE RING
Cl0-4 -
Clo-7 _
C65-3 e PEDESTAL., NO BRACKET
Cc93-7 _— PEDESTAL, NO BRACKET
C67-7 PLATINUM-PLATINUM -_— FLUSH, NO BRACKET FLAME SHIELD

10% RHODIUM
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APPENDIX A

SECONDARY CALIBRATION TECHNIQUES

1. Preflight Calibration Technique

Before each flight the total and radiation calorimeters were cali-
brated using an infrared lamp bank as a heat source. Time-temperature curves
were obtained for a range of heating rates which were determined by using a
low loss reference calorimeter as a standard. A typical preflight calibration
for radiation calorimeter C79-2 is shown in Figure A-1a for the SA-4 flight.

The flight time history is shown to indicate the flight temperature range covered
by the calibration. The slopes for each constant heating rate were measured and
plotted as a function of the slug temperature as shown in Figure A-1b. A cross
plot of this figure yields the working plot shown in Figure A-ic. Using the flight
data plotted as shown in Figure A-1b for SA-4, the calorimeter heating rate is
determined from Figure A-1ic.

A comparison of the preflight and inflight calibration methods (section
III-c) is shown in Figure A-2 for the radiation measurement C79-2 for both the
SA-1 and SA-4 flights. The preflight method yields much higher heating rates
for both flights over most of the trajectory than the inflight method. The pre-
flight calibration was performed for the SA-4 with partially simulated conditions
of the heat shield. This calibration generally lowered the heating rates, but
they were still in excess of those found by the inflight method.

In Figures A-3a, A-3b, and A-3c preflight calibrations curves are given
for the total calorimeter measurement C63-1 for the SA-4 flight. The calorimeter
was flush-mounted in an M-31 panel simulating the heat shield and contained a
nickel slug. Since the total calorimeters exceeded the temperature range by a
large amount, the greater part of the heating rate data is based on extrapolations
of the calibrations. Since the calibrations are made on the actual flight units,
the upper limit of 600°F (315°C) on the slug temperature is maintained to pre-
vent any possible damage to the units. The lower temperature data are not ob-
tained because of the slow heating of the calibration lamps which would result in
a transient heating rate in this region.

A comparison of the preflight and inflight calibrations is shown in Figure
A-4 for total calorimeter measurement C63-1 for both the SA-1 and SA-4 flights.
The comparison is found to be much better for the total calorimeters than for the
radiation calorimeters. The effects of simulating the heat shield cannot be
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obtained from Figure A-4 by comparing SA-1 flight with SA-4, since the SA-1
had an X-258 heat shield and used a copper slug calorimeter and for the SA-4
flight the calorimeter had a nickel slug and was flush mounted in an M-31 heat
shield.

Reference 8 shows that the copper calorimeters had much higher con-
duction losses than the nickle calorimeters. In Figure A-5 the conduction loss
factor as defined in the figure for a copper and nickel flight calorimeter is com-
pared. At low slug temperatures, a 40 percent reduction in the loss factor is
obtained with the nickel slug; this increases to approximately 50 percent at
600°F (315°C). This sizable loss reduction prompted the change in all the heat
shield total calorimeters to nickel starting with the SA-4 flight.

2. Post Flight Calibration Technique

An additional test technique has proved useful in evaluating the
calorimeter base heating rates. Reference 34 gives the results of the postflight
calibration procedure for the SA-4 flight.

The postflight calibration method (Fig. A-6) takes the flight temperature-
time curve of a particular calorimeter and with the aid of a "Data~Trak' con-
troller connected to an infrared lamp bank and a duplicate flight calorimeter
mounted in a heat shield panel, a programmed power setting for the lamp bank
is determined which will reproduce the flight-time-temperature curve from the
duplicate calorimeter. The programmed '"Data-Trak' is then rerun using the
above determined power setting with a water cooled ""asymptotic' standard
calorimeter installed under the lamp bank. The output of the calorimeter can
be converted directly to a heating rate and plotted with an automatic x-y plotter
as shown in Figure A-7. The preflight and inflight calibration methods can then
be compared with this technique as shown in Figure A-7. Reasonable compari-
sons have been obtained by this procedure, and many postflight evaluation prob-
lems have been investigated and solved by employing this test procedure.
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DETERMINE LAMP BANK POWER SETTING TO PRODUCE FLIGHT TIME -
TEMPERATURE CURVE FROM THE DUPLICATE CALORIMETER

LAMP BANK — “DATA TRAK"
lz— CONTROLLER

O _ 0 o

w | DUPLICATED

DUPLICATE € N FLIGHT DATA

CALORIMETER g , e

€ HEAT SHIELD © / 3 _

. 8- //ZFUGHT 0ATA |3 X-Y PLOTTER

w =
- >

je— TIME —

STEP I

USING THE POWER SETTING ESTABLISHED IN STEP T THE HEATING RATE
IS MEASURED DIRECTLY WITH AN ASYMPTOTIC WATER COOLED SENSOR

LAMP BANK E* Ci ? ? (}DC‘)LA =<—1  “DATA TRAK"

o O O CONTROLLER

A
CALCULATED
geszhsﬂgmg ./ FROMFLIGHT DATA
HEAT SHIELD

W

a1\ X-Y PLOTTER
2 |

'5 SENSOR MEASUREMENT

X

j=— TIME —

FIGURE A-6. POSTFLIGHT CALIBRATION TECHNIQUE

128




FOR MEASUREMENT C76-3 ON SA-4 FLIGHT
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APPENDIX B

RADIATION CALORIMETER LOSSES

Additional information on the losses found in the radiation calorimeters
used for the Block I vehicles is included here.

Figure B-1 indicates the effects of the calorimeter view angle on
calibration factor K (calorimeter heating rate ratioed to a low loss 180-degree
view angle reference calorimeter) with distance from a radiation source. The
three different view angle calorimeters that were flown are presented. The 150~
degree calorimeter indicated the lowest calibration factor and was the least
influenced by the distance of the normal radiation source. As the view angle
decreased, the calibration factor increased and changed more rapidly with the
location of the radiation source.

The 114-degree view angle calorimeter used on the SA-1 flight was
tested in Reference 15 for the effects of a variable angle of incidence.

Figure B-~2 indicates that there is only a nominal change in the calibra-
tion factor between the normal angle of incidence and 30 degrees. For the 60-
degree angle of incidence, the initial level is seen to be much larger, and a
sharp rise in the calibration factor is found with increasing distance from the
source. Since the distance and angle of incidence of the jet plume radiation
varies with altitude, an evaluation of the correction for the flight conditions
cannot be made.

The window transmissivity of the flight calorimeters are known to have’
some effect on the calorimeter output as previously discussed. In Figure B-3
the percent transmission through the sapphire window is shown as a function of
the angle of incidence of the radiation source. The curve is shown for the
average value of the refractive index (r) in the 2-3 micron spectral range where
radiation from the rocket exhaust is the most intense. For-this range the ab-
sorption coefficient (d) is taken as zero based on information found in Reference
13. The calorimeter view angle is shown for each flight and indicates that for the
SA-1 flight, if the radiation came from an angle of incidence equal to the view
angle, the transmission would be 80 percent; whereas, the SA-3 and SA-4 flights
would be 57 percent. This rapid decrease in transmission offsets partially the
effects of the increased view angle of the later flights. It is not possible to
determine the error involved since the incidence angle and radiation intensity vary
with altitude; but since the plume radiation is not great at the higher altitudes
(where the angle of incidence would be the highest due to plume expansion) the
absolute heating rate error is expected to be small.
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APPENDIX C

MODEL SCALING METHOD

The problem of scaling model convective heating rate data as discussed
in the body of this report has been a very difficult one. The procedure used for
the included data has been based on the work found in References 30, 31, and 32.
The analysis admittedly does not account for many of the dissimilar effects be-
tween model and prototype and the condition of a hot gas circulating in the base.
It was found that the local heat transfer by forced convection from the base sur-
face of blunt bodies correlated satisfactorily using an equation of the type.

Nusselt Number = Constant (Reynolds Number)z/3
BD_ g ” ’ (1)
K 14
where h = heat transfer coefficient
K = thermal conductivity of air
U, = freestream velocity
C = constant
v = kinematic viscosity
D = vehicle base diameter

Solving equation (1) for h, we obtain
v 3

h=CK (—Vi) pl/3

under the assumption that the air flow properties over the model and prototype
are the same.

Then,
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;:—12’. = Constant. (3)

For model scaling

h h

mod _ fit
b V3T [ -3 ¢ (4)
mod flt '
or
1/3 .

mod
h. =h G ) ’ (9)
flt mod Dflt »

where flt = the flight value
mod = the model value.

‘The value of D /D, is actually the model scale and for the Cornell and AEDC
mod flt
tests h :
.
=.378h > (6)

.33
=B oa (0547 od

hﬂt
and for the Lewis tests

=h (.0357)'333=.329h
mod m

b od . (")

Now, to correct the model convective heating rates to a flight equivalent,
the heat transfer coefficient is defined as

9

h="r"—"F—"F7 (8)
(T -T,)

where E;c = convective component of the heating rate from a total calorimeter

TR = recovery temperature

TW = calorimeter slug temperature -
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Substituting in equation (5) the appropriate flight and model values

mod 1/3
Gae= o ) T~ Tyt Pmod ®)
fit
or
1/3
(q )= ( mod) (TR - Tw)flt (10)
fit - Dflt (TR - Tw)mod cmod

For the flight data, TR is taken as the measured gas temperature (Tg)
in the base region near the point where the heating rate was measured.

The model value of TR is found by plotting the calorimeter measured
heating rate (for a constant condition of altitude and Mach number) as a func-
tion of the slug wall temperature (Fig. C-1). The constant value of the meas-
ured radiation heating rate was subtracted. The intersection of the curve at
E}C = 0 yields the value of the recovery temperature (TR).

The model heating rates, when plotted versus the calorimeter slug
temperature, usually peaked near 38°C. This value is taken as reference
temperature when model heating rates are compared. As seen from Figure C-1,
the slope of this curve will yield the model value of the heat transfer coefficient

(hmod) )
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